
Section 6.5: Combinations

Example Recall our five friends, Alan, Cassie, Maggie, Seth and Roger from the example at the
beginning of the previous section. The have won 3 tickets for a concert in Chicago and everybody would
like to go. However, they cannot afford two more tickets and must choose a group of three people from
the five to go to the concert. Alan decides to make a fair decision on who gets the tickets, by writing
the initials of each possible group of 3 individuals from the 5 friends on a separate piece of paper and
putting all of the pieces of paper in a hat. He will then draw one piece of paper from the hat at random
to select the lucky group. The order in which the names of the individuals is written is irrelevant. The
complete list of the 10 possible groups of size three from the five friends is shown below:

AMC AMS AMR ACS ACR
ASR MSR MCR MCS CRS

Note that for every group on this list, it appears 6 = 3! times on the list of possible photographs of
three of the five friends that we saw in the last lecture:

AMC AMS AMR ACS ACR
ACM ASM ARM ASC ARC
CAM MAS MAR CAS CAR
CMA MSA MRA CSA CRA
MAC SAM RAM SAC RCA
MCA SMA RMA SCA RAC
ASR MSR MCR MCS CRS
ARS MRS MRC MSC CSR
SAR SMR RMC CMS RCS
SRA SRM RCM CSM RSC
RSA MRS CRM SMC SCR
RAS MSR CMR SCM SRC

Its easy to see that the reason for this is because every group of three individuals can be permuted in
3! = 6 ways to create 3! different photographs. When selecting a group from the hat to receive the
tickets, the order in which the names of the individuals appear on the slip of paper is irrelevant. The
group AMC is the same as the group CAM , so only one of the 3! permutations of this group should be
in the hat for selection. Thus the number of ways to select a subset of three individuals from the five
friends to receive the three tickets is

60

3!
=

P (5, 3)

3!
=

5!

2!3!
.

Alan has listed all Combinations of the five friends, taken 3 at a time to put in the hat. The number
of such combinations, which is 10, is denoted by C(5, 3). In terms of set theory he has listed all subsets
of 3 objects in the set of 5 objects {A,B,C,D,E}.

Definition A Combination of n objects taken R at a time is a selection (Sample, Team) of R
objects taken from among the n. The order in which the objects are chosen does not matter.

The key characteristics of a combination are

1. A combination selects elements from a single set.

2. Repetitions are not allowed.
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3. The order in which the selected elements are arranged is not significant.

The number of such combinations is denoted by the symbol C(n,R) or
(
n
R

)
.

We have

C(n,R) =

(
n

R

)
=

n× (n− 1)× · · · × (n−R + 1)

R× (R− 1)× (R− 2)× · · · × 1
=

P (n,R)

R!
=

n!

R!(n−R)!

Example Evaluate C(10, 3).

C(10, 3) =
10!

3! · 7!
=

10 · 9 · 8
3 · 2 · 1

= 5 · 3 · 8 = 120

Example(Choosing a team) How many ways are there to choose a team of 7 people from a class of
40 students in order to make a team for Bookstore Basketball?

C(40, 7) =
40!

7! · 33!
=

40 · 39 · 38 · 37 · 36 · 35 · 34

7 · 6 · 5 · 4 · 3 · 2 · 1
=

10 · 39 · 38 · 37 · 34 = 18, 643, 560

Example(Round Robins) In a soccer tournament with 15 teams, each team must play each other
team exactly once. How many matches must be played?

C(15, 2) =
15!

2! · 13!
=

15 · 14

2 · 1
= 15 · 7 = 105

Example(Poker Hands) A poker hand consists of five cards dealt at random from a standard deck of
52. How many different poker hands are possible?

C(52, 5) =
52!

5! · 47!
= 2, 598, 960

Example A standard deck of cards consists of 13 hearts, 13 diamonds, 13 spades and 13 clubs. How
many poker hands consist entirely of clubs?

C(13, 5) =
13!

5! · 8!
= 1, 287

Example How many poker hands consist of red cards only?

There are 26 red cards so C(26, 5) =
26!

5! · 21!
= 65, 780

Example How many poker hands consist of 2 kings and 3 queens?
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There are 4 kings and 4 queens. We can select 2 kings in
C(4, 2) ways and we can select 3 queens in C(4, 3) ways.
We can distinguish kings from queens so the answer is
C(4, 2) · C(4, 3) = 6 · 4 = 24.

Bonus meditation: Why is

C(8, 5) = C(4, 4)·C(4, 1)+C(4, 3)·C(4, 2)+C(4, 2)·C(4, 3)+C(4, 1)·C(4, 4) ?

Example (Quality Control) A factory produces light bulbs and ships them in boxes of 50 to their
customers. A quality control inspector checks a box by taking out a sample of size 5 and checking if any
of those 5 bulbs are defective. If at least one defective bulb is found the box is not shipped, otherwise
the box is shipped. How many different samples of size five can be taken from a box of 50 bulbs?

C(50, 5) = 2, 118, 760.

Example If a box of 50 light bulbs contains 20 defective light bulbs and 30 non-defective light bulbs,
how many samples of size 5 can be drawn from the box so that all of the light bulbs in the sample are
good?

C(30, 5) = 142, 506.
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Problems using a mixture of counting principles

Example How many poker hands have at least two kings?
There are C(4, 2) ways to get 2 kings and C(48, 3) ways to fill out the hand. Hence
there are C(4, 2) · C(48, 3) hands with exactly 2 kings. There are C(4, 3) · C(48, 2)
hands with exactly 3 kings and there are C(4, 4) ·C(48, 1) hands with exactly 4 kings.
Hence there are C(4, 2) · C(48, 3) + C(4, 3) · C(48, 2) + C(4, 4) · C(48, 1) hands with
at least two kings. The number is 6 · 17, 296 + 4 · 1, 128 + 1 · 48 = 108, 336.

Example In the Notre Dame Juggling club, there are 5 graduate students and 7 undergraduate students.
All would like to attend a juggling performance in Chicago. However, they only have funding from
Student Activities for 5 people to attend. The funding will only apply if at least three of those attending
are undergraduates. In how many ways can 5 people be chosen to go to the performance so that the
funding will be granted?

Again it is useful to break the problem up, in this case by number-of-undergraduates.
We need to work out how many ways we can get 3 undergraduates, how many ways
we can get 4 undergraduates, how many ways we can get 5 undergraduates, and then
add these numbers.

Three undergraduates: C(7, 3) · C(5, 2); Four undergraduates: C(7, 4) · C(5, 1); Five
undergraduates: C(7, 5) · C(5, 0). The number is 35 · 10 + 35 · 5 + 21 cot 1 = 546.

Example Gino’s Pizza Parlor offers 3 three types of crust, 2 types of cheese, 4 vegetable toppings and
3 meat toppings. Pat always chooses one type of crust, one type of cheese, 2 vegetable toppings and
two meat toppings. how many different pizzas can Pat create?

Pat’s choices are independent so C(3, 1) ·C(2, 1) ·C(4, 2) ·C(3, 2) = 3 · 2 · 6 · 3 = 108.

Example How many subsets of a set of size 5 have at least 4 elements?
C(5, 4) + C(5, 5).

Special Cases and Formulas
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• It is immediate from our formula

C(n,R) =
n!

R!(n−R)!

that
C(n,R) = C(n, n−R).

Thus C(10, 3) = C(10, 7) and C(100, 98) = C(100, 2) etc....

• By definition (for convenience) 0! = 1 and C(n, 0) = 1, which makes sense since there is exactly
one subset with zero elements in every set.

• C(n, 1) = n!
(n−1)!

= n, which makes sense since there are exactly n subsets with one element in a
set with n elements.

• C(n, n) = C(n, 0) = 1 which makes sense because ......... (finish the sentence).

The Binomial Theorem

The Binomial theorem says that for any positive integer n and two numbers x and y, we have

(x + y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn

For example if n = 4, then the theorem says that

(x + y)4 =

(
4

0

)
x4 +

(
4

1

)
x3y +

(
4

2

)
x2y2 +

(
4

3

)
xy3 +

(
4

4

)
y4.

Example (a) Check that the above equation is true for n = 4, x = 2, y = 3.

(b) Check that the above equation is true for n = 4, x = 1, y = 1.

Things to Note
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(X + Y)4 = (4

0)x4 + (4

1)x3y1 +(4

2)x2y2 + (4

3)x1y3 + (4

4)y4

2 3

3 + 1 = 4 2 + 2 = 4

Symmetry

C(4, 1) = C(4, 3)

Powers of x and y are switched

Note how the powers relate to the lower numbers in the coefficients.

Note how the powers decrease on the x’s and increase on the y’s as we move from left to right.

Note how the powers in each term of the expression add to n.

Note the symmetry in the expansion.(
4
1

)
x3y is a Term of the expression and

(
4
1

)
is the coefficient of that term.

Note that the sum of the coefficients of the terms of the expansion of (x + y)4 is equal to the total
number of subsets one can make using a set of size n = 4. Setting x = 1 and y = 1 in the above
equation, we get the formula:

24 =

(
4

0

)
+

(
4

1

)
+

(
4

2

)
+

(
4

3

)
+

(
4

4

)
Applying the same proof to the general case, we get the formula:

2n =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+

(
n

3

)
+ · · ·+

(
n

n

)
= C(n, 0) + C(n, 1) + C(n, 2) + C(n, 3) + · · ·+ C(n, n)

for any counting number n. Thus the number of subsets of a set with n elements is 2n.

Example A set has ten elements. How many of its subsets have at least two elements?
C(10, 2)+C(10, 3)+C(10, 4)+C(10, 5)+C(10, 6)+C(10, 7)+C(10, 8)+C(10, 9)+C(10, 10).

To actually compute this number it is easier to compute

210 −
(
C(10, 0) + C(10, 1)

)
= 1024− (1 + 10) = 1013
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Example How many tips could you leave at a restaurant, if you have a half-dollar, a one dollar coin,
a two dollar note and a five dollar note?

You can leave any subset of your money. You have 4 items so there are 24 = 16 possibilities.

Extra: Taxi Cab Geometry revisited.
Recall that the number of taxi cab routes (always traveling south or east) from A to B is the number

of different rearrangements of the sequence SSSSEEEEE which is

9!

4!5!
= C(9, 4) = C(9, 5).

The sequence SSSSEEEEE is shown in red and the sequence ESSEEESES in blue.

A

B

s

s
Can you think of any reason why the number of routes should equal the number of ways to choose

4 objects from a set of 9 objects?
A route is specified by a string of S’s and E’s with exactly 4 S’s and 5 E’s and any such

string specifies a route. In other words you need a nine letter word made up of 4 S’s and
5 E’s. If I give you a subset of 4 elements of the set {1, 2, · · · , 9} and you put S’s in those
positions, then you can fill in the rest of the word with E’s.

As an example, given {3, 1, 7, 6} start with S S SS and get S E S E E S S E.
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